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a b s t r a c t

The vomeronasal system (VNS) of rodents participates in the regulation of a variety of social and sex-
ual behaviours related to semiochemical communication. All rodents studied so far possess two parallel
pathways from the vomeronasal organ (VNO) to the accessory olfactory bulb (AOB). These segregated
afferences express either Gi2 or Go protein �-subunits and innervate the rostral or caudal half of the
AOB, respectively. In muroid rodents, such as rats and mice, both subdivisions of the AOB are of similar
proportions; as there is no anatomical feature indicative of the segregation, histochemical detection has
been required to portray its boundary.

We studied the AOB of Octodon degus, a diurnal caviomorph rodent endemic to central Chile, and found
several distinctive traits not reported in a rodent before: (i) the vomeronasal nerve innervates the AOB
from its lateral aspect, in opposition to the medial innervation described in rabbits and muroids, (ii) an
indentation that spans all layers delimits the boundary between the rostral and caudal AOB subdivisions

(rAOB and cAOB, respectively), (iii) the rAOB is twice the size of the cAOB and features more and larger
glomeruli, and (iv) the rAOB, but not the cAOB, shows male-biased sexual dimorphisms in size and number
of glomeruli, while the cAOB, but not the rAOB, shows a male-biased dimorphism in mitral cell density.

The heterogeneities we describe here within AOB subdomains suggest that these segregated regions
may engage in distinct operationalities. We discuss our results in relation to conspecific semiochemical

s, and
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. Introduction

The vomeronasal system (VNS) of mammals is a senso-effector
euronal network that participates in the perception of semio-
hemicals, commonly called pheromones, and in the generation
f bodily responses, such as oestrus induction or pregnancy block
for review see refs. [2,29]). Although both the main olfactory
nd vomeronasal systems participate in the neuroendocrine and
ehavioural functions, the sole perturbation of some of VNS
omponents may severely disrupt many aspects of socio-sexual

ehaviours [4,7,16,35,59].

The sensory surface of the VNS is the vomeronasal organ (VNO),
tubular structure located bilaterally at the base of the nasal sep-

um that sends primary axons to the accessory olfactory bulb (AOB).
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present it as a new animal model for the study of VNS neurobiology and

© 2008 Elsevier B.V. All rights reserved.

luids containing semiochemicals may reach the VNO of exploring
nimals by means of a vascular pumping mechanism [45,46], and
hysical contact with an odorous source is thought to be required
o activate the system [36,48].

Two distinct populations of vomeronasal receptor neurons
VRN) are anatomically segregated in the neuroepithelium of the
NO and project to different subdomains of the AOB. VRNs with
pically situated somata express a vomeronasal receptor protein
f the V1R family, which is coupled to Gi2 � protein, and send
rojections to glomeruli of the rostral aspect of the AOB (rAOB);
hereas basally located VRNs express receptors of the V2R family,

re associated to Go � protein, and project to the caudal AOB (cAOB)
1,10,18,24,41,51]. The innervation of vomeronasal axons into the
OB is exclusively segregated in rostral and caudal regions, whose

oundary has only been possible to define with the use of histo-
hemistry or immunolabeling [8,17,31,49,60].

We studied the AOB of the new-world rodent Octodon degus
Rodentia; Hystricognathi; Octodontidae). The degu is a precocial,
ong-lived, diurnal and social rodent that makes active use of

http://www.sciencedirect.com/science/journal/01664328
http://www.elsevier.com/locate/bbr
mailto:rsuarezsaa@gmail.com
dx.doi.org/10.1016/j.bbr.2008.11.009
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emiochemical signalling in social and sexual communication
5,11–15]. We found that the AOB of degus shows a bilobular
rganization and that these segregated regions differ in size and
n the degree of sexual dimorphisms. We discuss several aspects
f degus natural behaviour that may correlate with our findings.

. Methods

.1. Animals

A total of 24 adult individuals (195–286 g body weight) of O. degus were used
n this study. F1 and F2 generations of a stock of animals captured near Santiago,
hile, were bred in captivity and maintained in an institutional animal facility under
atural light and temperature conditions. They were kept in spacious cages (50 cm
ide × 60 cm long × 40 cm high) with their siblings until adulthood. Water and food

rabbit pellets) were provided ad libitum. All the experimental procedures followed
he “Principles of laboratory animal care” (NIH publication no. 86-23, revised 1985)
nd were approved by the faculty ethics committee (Comité de Ética de la Facultad
e Ciencias, Universidad de Chile) according to Chilean legislation. The number of
egus used was minimized, and every effort was made to reduce animal discomfort.

.2. Tissue preparation

Sexually mature animals, i.e. older than 7 months, were deeply anesthetized
ith a mixture of ketamine and xylazine (2.4 and 0.4 ml/kg, respectively, i.p.) and
erfused via the ascending aorta with a temperate solution of 0.1 M phosphate-
uffered saline at pH 7.4 (PBS), followed by 4% paraformaldehyde in PBS. After a
areful dissection of the brain and postfixation for at least 24 h in 4% PFA at 5 ◦C, we
ubmerged the olfactory bulbs (OBs) in a 30% sucrose solution (w/v) in PBS until they
ank (ca. 1–2 days). Then, we obtained sagittal slices 45 �m thick of the OBs using
freezing sliding microtome. Serial sections (from 10 males and 10 females) were
ounted onto gelatin-coated slides, rinsed in dH2O, dehydrated, stained with cresyl

iolet, cleared and coverslipped with Permount. All the slides were then coded.

.3. Immunohistochemistry

Sagittal sections of the OBs were incubated free-floating in PBS with 0.05% Triton
-100 (PBST) and 0.3% H2O2 for 30 min, followed by 5% normal goat serum (NGS) in
BST for 1 h. The slices were then incubated with primary immunoglobulins raised
gainst Gi2 � (1:200, cat no. sc-13534, Santa Cruz Biotechnology, Santa Cruz, CA) or
o � (1:200, cat no. sc-13532, Santa Cruz Biotechnology, Santa Cruz, CA) with 3%
GS in PBST for 16 h at 5◦ C. Subsequently, the sections were rinsed and incubated

n biotinylated goat anti-mouse secondary antibody (1:200, cat no. sc-2039, Santa
ruz Biotechnology, Santa Cruz, CA) for 2 h and processed with the avidin-biotin
omplex (ABC Elite Kit; Vector Laboratories). The sections were reacted in PBS with
.6 mg/ml of 3,3-diaminobenzidine (Sigma) and 0.003% H2O2 for 1–3 min.

.4. Morphometrical measurements

Serial consecutive sections were examined under light microscopy and pho-
ographed using the SPOT camera and software (Spot Advanced, Diagnostic
nstrument, Inc). For each section, we determined the surface area of both the com-
lete AOB (from the vomeronasal nerve layer to the mitral cell layer in depth) and of
he rostral subdivision of the AOB (rAOB). We estimated the area of the caudal AOB
cAOB) by subtracting rAOB from AOB. Then, we computed the volume of a section
omprising eight consecutive 45 �m sections centered in the slice with maximum
OB area, thus spanning at least 80% of glomerular volume. The farther medial and

ateral portions of the AOB were excluded from the analysis because its glomeruli
ere variable in number and because the rostro-caudal boundary was not evident.

he investigator was blind to the identity of each series.
We counted and determined the diameter of glomeruli for each section at both

AOB and cAOB. We also estimated the density of projection neurons at both rAOB
nd cAOB by counting mitral cells in a restricted square area of 0.01 mm2 at each
ubdivision.

.5. Statistical analysis

Non-parametric statistics were performed to analyze the data, as they did not
how a normal distribution; the Mann–Whitney U-test was chosen to compare
etween male and female values, and the Wilcoxon-matched pairs test was used to
ompare rostral and caudal regions of the AOB. All the statistical analyses were done
sing Statistica 6.0 (StatSoft Inc., Tulsa, OK). Data are presented as the mean ± one

tandard error.

.6. Figure preparation

Photomicrographs were processed and assembled into figures by using Adobe
hotoShop CS3 (Adobe Systems, San Jose, CA). Images were cropped, resized, rotated
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nd/or turned to grayscale for presentation purposes. Levels, contrast and brightness
ere adjusted when necessary.

. Results

.1. Bilobular segregation of the AOB of Octodon degus

The AOB of O. degus is a prominent structure embedded in the
orso-caudal extent of the main olfactory bulb (MOB). In relation
ith the MOB, the AOB of degus may perhaps be one of the largest

mongst mammals (see Fig. 1). It is composed of five well-defined
ayers: the vomeronasal nerve (VNL), glomerular (GlL), external
lexiform (EPL), mitral cell (ML), and granular cell (GrL) layers
Fig. 1A). Vomeronasal glomeruli are small and densely packed,
s compared with glomeruli of the MOB, and are surrounded by
bundant periglomerular cells, (Fig. 1B and C). Mitral cells are com-
actly distributed at the ML, although some mitral/tufted cells can
e observed throughout the EPL. Granular cells are arranged in mul-
iple clusters (5–8 sheets in depth) at the GrL, underneath the lateral
lfactory tract (lot).

The rostral and caudal subdivisions of the AOB of O. degus are
orphologically segregated by an indentation spanning all cellular

ayers, as depicted with arrowheads in Fig. 1A, thus defining two
obular subdomains. The segregation of the AOB coincides with the
xpression of G-protein �-subunits. Gi2 � showed immunoreactiv-
ty in the VNL and GlL of the rAOB only, whereas Go � was present
n the VNL and GlL of the cAOB and in main olfactory glomeruli (see
ig. 2), as also reported in other species [56,62,64]. The expression of
hese proteins was exclusive to each subdomain of the AOB, and its
oundary corresponded with the cellular indentation (arrowheads

n Fig. 2D).

.2. Size heterogeneity at the segregated AOB subdomains

The subdomains of the AOB of O. degus are highly dispro-
ortional. The volume of the rAOB was 0.289 ± 0.009 mm3, twice
he size of the cAOB that measured 0.145 ± 0.006 mm3 (Z = 6.96,
< 0.000001; Fig. 3A). We compared the mean number and size
f individual glomeruli at both subdomains, as a simple exam-
nation suggested differences. The mean number of glomeruli
er section was 103 ± 2.5 for the rAOB, versus 62.7 ± 2.2 at
he cAOB (Z = 6.96, p < 0.000001; Fig. 3B), and the mean diam-
ter of rAOB glomeruli was 0.048 ± 0.001 mm, while glomeruli
f the cAOB measured an average of 0.037 ± 0.001 mm (Z = 5.91,
< 0.000001; Fig. 3C).

.3. Different degrees of sexual dimorphism at each AOB
ubdivision

The results regarding sex differences at degus AOB are sum-
arized in Table 1. Volumetric estimations of the overall AOB

howed significantly larger values for males than females (Z = −2.15,
< 0.05). However, when assessing sexual differences at each AOB

ubdivision we found that the rAOB, but not the cAOB, presented
larger mean volume in males than females (Z = −2.15, p < 0.05;

able 1), thus suggesting that the rAOB solely accounts for the
imorphic volumes observed in overall AOB.

The number and size of glomeruli also differed between sexes
nd subdivisions: males had more glomeruli than females, both at
he rAOB (Z = −3.01, p < 0.003) and at the cAOB (Z = −2.52, p < 0.02).

owever, although males had larger glomeruli at the rAOB than

emales (Z = −2.67, p < 0.008), glomerular size at the cAOB showed
o sex difference (see Table 1). However, the density of mitral cells
howed an opposite pattern of male-biased dimorphism: although
o sex differences in cell density were found at the rAOB (p = 0.083),
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Fig. 1. Photomicrograph of a sagittal section through the olfactory bulb of Octodon degus. (A) The bilobular organization of the segregated accessory olfactory bulb (AOB) is
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efined by a cellular indentation, as depicted by arrowheads. Note the size of the AO
howing individual glomeruli surrounded by periglomerular cells. VNL, vomeronas
ot, lateral olfactory tract; GrL, granular cell layer; MOB, main olfactory bulb. Lines u
B and C).

he cAOB of males showed a higher cell density than that of females
Z = −2.24, p < 0.026).

Body mass of captive degus is larger in males than females
258.0 ± 6.37 g vs. 232.8 ± 8.45 g; Z = −2.12, p < 0.05). However, it
as been reported that degus show no sex differences in overall

rain dimensions [65]. In this study we scored three additional
rain measurements: maximum cerebral width, maximum cere-
ral height, and ventral mesencephalon width, but found no sex
ifference (Z = −1.14, p > 0.26; Z = −0.79, p > 0.44; Z = −1.84, p > 0.08,
espectively). We also assessed whether the season in which the

o
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ig. 2. G-protein �-subunit pattern of expression at the accessory olfactory bulb (AOB) o
ayer of the rostral AOB (rAOB) only. (B) Its margin of expression does not extend into th
lfactory glomeruli. Although Go � expression can be observed to some extent throughou
expression. (D) The indentation across layers corresponds to the boundary between sub

he area indicated in (A and C), respectively. Scale bar: 500 �m (A and C), 200 �m (B and
lation to the MOB. (B) Enlarged view of the rostral, and caudal (C) AOB subdomains,
ve layer; GlL, glomerular layer; EPL, external plexiform layer; ML, mitral cell layer;
ing layers in (A) indicate the spatial extent of each. Scale bar: 500 �m (A), 200 �m

nimals were sacrificed affected AOB measurements, but found no
ffect (not shown).

.4. Lateral innervation of the vomeronasal nerve into the AOB
Unexpectedly, and in opposition to what has been described in
ther species, we found that the vomeronasal nerve of degus arrives
t the AOB from its lateral margin. A series of sagittal sections, pre-
ented from lateral to medial and immunolabelled against Gi2 �
s shown on Fig. 4A. The vomeronasal nerve can be seen entering

f Octodon degus. (A) Gi2 � is expressed at the vomeronasal nerve and glomerular
e cAOB territory. (C) Go � expression is restricted to caudal AOB (cAOB) and main
t the olfactory bulb, the vomeronasal nerve layer of the rAOB completely lacks Go
domains, as depicted by arrowheads. (B and D) correspond to an enlarged view of

D).
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ig. 3. The segregated subdomains of the accessory olfactory bulb (AOB) of Octo
olume of the caudal zone (cAOB). (B) Vomeronasal glomeruli are more numerous
ilcoxon-matched pairs test.

nto the AOB from its lateral margin to end in rostral glomeruli
s advancing towards medial sections. After a maximum of area,
he Gi2 �-positive staining becomes smaller to eventually disap-
ear in medial-most sections. Fig. 4B shows a reconstruction of the

eft olfactory bulb, as if seen from above, after examining several
agittal and coronal series. The AOB lies just underneath the neo-
ortex. Both the dorsal and ventral boundaries between the rAOB
nd cAOB are inclined towards the rostromedial aspect (contin-
ous and dotted lines, respectively). The glomeruli of the rAOB
re distributed rostrolaterally, while those of the cAOB are caudo-
edially distributed. The lateral innervation of the vomeronasal

erve into the AOB of degus contrasts with the medial innervation

escribed in rabbits [19], mice [28,64], and rats [32], and whether

t is a common feature of caviomorph rodents deserves further
nvestigation.

b
t
m

ig. 4. Lateral innervation of the vomeronasal nerve into the accessory olfactory bulb (AO
i2 � and spaced at 160 �m intervals, is arranged from lateral (top left) to medial (bott
bove. The boundary between both AOB subdivisions is tilted rostromedially. The ventral
he neocortex, which is represented by an interrupted line. These regions were reconstruc
ulb; rAOB, rostral accessory olfactory bulb; cAOB, caudal accessory olfactory bulb; R, ros
egus are disproportional. (A) The rostral portion of the AOB (rAOB) is twice the
C) larger in the rAOB than the cAOB. Data expressed as mean + S.E., *p < 0.000001,

. Discussion

The AOB of O. degus shows several anatomical features that
iffer those of more studied old-world muroid rodents. While
uroid AOB is lens-shaped with uniform-sized subdivisions, the

OB of degus is bilobular: an indentation spanning all cellular layers
emarcates the rostral and caudal subdivisions. Moreover, the sub-
ivisions of the AOB of degus present remarkable heterogeneities:
he rAOB is twice as large as the cAOB and shows more accentu-
ted sexual dimorphisms in terms of size and number of glomeruli.
urthermore, the lateral innervation of the vomeronasal nerve into
he AOB, as opposed to the medial innervation described in rab-

its and muroid rodents, leads to the supposition that this trait,
ogether with those described above, might show variability across

ammalian species.

B) of Octodon degus. (A) A series of 40 �m sagittal sections, immunolabelled against
om right). (B) Reconstruction of a left olfactory bulb of degus as if seen from the
margin of the boundary is represented by a dotted line. The AOB lies just beneath
ted based on the observation of sagittal and coronal sections. MOB, main olfactory
tral; M, medial; C, caudal; L, lateral. Scale bar = 500 �m.
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.1. Functional significance of the segregated vomeronasal
athways

Vomeronasal neurons terminating in rAOB glomeruli express
eceptors of the V1R family that, like the main olfactory recep-
ors, have a minute extracellular NH-terminal domain [10]. In this
ind of receptors ligand binding is thought to occur at the mem-
rane plane [18,41]. Accordingly, a diverse set of small lipophilic
olatiles that elicit sex-related responses have shown to activate
1R neurons [30,33,49,61]. In contrast, V2R receptors have a large
H-terminal domain [18,41,51], and have shown to be responsive

o large molecules such as protein fragments present in body secre-
ions and urine [25,26,30,34].

It has been reported that volatile and non-volatile chemical
timulation elicit specific neuronal responses at the rAOB and cAOB,
espectively [49,61]. Moreover, several studies have shown that the
AOB responds to semiochemicals in a sexual (male–female) con-
ext, while the cAOB would be involved in intrasexual (male–male)
nteractions [8,9,20–22,31,42,49].

As the AOB receives centrifugal projections from its recipient
uclei [40], as well as afferences from neuromodulatory nuclei such
s the locus coeruleus [44], the behavioural milieu may affect neu-
onal activity at the AOB. Moreover, several nuclei in receipt of AOB
fferences are known to be independently connected with hypotha-
amic nuclei involved in reproductive and defensive behaviours [3].
nder this scenario, a disproportionally large rAOB may be related
ither to a volatile form of chemical communication or to intersex-
al pheromonal appraisal, or both.

.2. Social communication of Octodon degus and the
isproportional AOB subdomains

O. degus is a diurnal group-living cursorial rodent that shows
structured social system [57,63]. While juvenile males dis-

erse from their family group, females are phylopatric, i.e., they
tay in a family burrow system. During the reproductive season
May–September), males defend and monopolize groups of 4–5
emales [15] that engage in communal nursing of pups [13,23].
on-aggressive male–male interactions, such as nose contact, can
e observed in the field during the non-breeding season, but as the
reeding season arrives all male–male interaction becomes aggres-
ive [58]. O. degus scent-mark profusely their surroundings. They
erform dustbathings near burrow entrances by rubbing rhythmi-
ally their flanks and ventrum against the soily substrate [15,27].
ustbathing behaviour is affected by the sex and familiarity of past

ignallers [11,12], thus degus seem to engage in social communica-
ion by leaving chemical signatures on the soil.

As male–male body sniffing is seldom seen during the breed-
ng season, we expect that non-contact social chemosignaling, like
ustbathing, would be evolutionarily conserved as it minimizes
ggression risk associated to male-male inspection. Indeed, male
egus may use long-range chemosignaling, as captive males are
ble to discriminate urinary volatiles of virgin vs. sexually experi-
nced males [57]. Thus, the disproportionally large rAOB may be
elated to a long-range volatile chemosignaling, as well as an inter-
exual, rather than male-male, pheromonal sampling with body
ontact, as might occur during copulation.

.3. Sexual dimorphisms at the AOB and the mating system of
egus
Sexual dimorphisms at the VNS have been described in rats
52,53], mice [55], voles [37], rabbits [54] and opossums [38], and
ave been traditionally associated with an epigenetic function of
he endocrine system (for review see refs. [52,53]). However, only
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few studies have discussed how aspects of natural history, such
s the mating system or parental care, could relate to sexual dimor-
hisms at the VNS [6,37]. In polygynous species, such as degus,
he pheromonal stimulation associated with copulation is likely to
e more frequent and more diverse in males than females. Conse-
uently, sexual dimorphisms in sensory systems may emerge as
istorical differences in sensory stimulation between the sexes.
ur findings that the rAOB of males had larger and more numer-
us glomeruli than females, and that overall sex dimorphisms were
ore accentuated in the rAOB than the cAOB, support the notion

hat the rAOB is involved in intersexual pheromonal appraisal.
oreover, the fact that glomerular development depends on sen-

ory stimulation [67], suggests that epigenetic mechanisms might
etermine the dimorphic pattern seen at the AOB. The trans-
enerational conservation of a particular behavioural relationship
etween and within the sexes in O. degus may explain the anatom-

cal traits described here for this species, as it has been proposed
s a systemic mechanism of phenotypic conservation throughout
ineages [43].

Similar patterns of vomeronasal heterogeneity and dimorphism
ave been described before: in the rabbit, the rAOB is also larger
han the cAOB [19], and both rats and mice have more genes of the
1R than the V2R vomeronasal receptor families [66]. Likewise, in
dult rats, there is a greater incidence of neurogenic cells at the
AOB than at the cAOB in males only, and only the rAOB showed
ore newly generated cells in males than females [50]. Finally,
ale-biased size dimorphisms have also been reported to be more

ccentuated at the rAOB than at the cAOB of the marsupial opossum
Monodelphis domestica) [38].

To our knowledge, no study has shown more pronounced dimor-
hisms occurring at the cAOB as compared to the rAOB. Here,
e present evidence for a male-biased dimorphism in terms of
itral/tufted cell density occurring at the cAOB, but not at the rAOB.
lthough the size of cAOB glomeruli did not differ between sexes,

heir number was larger in males than females, so the possibility of
ifferences in neuronal branching or connectivity of mitral/tufted
ells remains open.

The evidence presented in this work strongly supports the
otion of an operational independence between AOB subdomains.
he possibility that the neuronal projections of the segregated AOB
ubdomains of degus conserve their segregation at their recipi-
nt nuclei, such as is the case of rats [47], and opossums [39], is
upported by the disproportional nature of AOB subdomains and
eserves further examination.
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